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Abstract  

Background: Extreme heat is a leading weather-related cause of mortality in the United States, 

but little guidance is available regarding how temperature variable selection impacts 

heat–mortality relationships.  

Objectives: We examine how the strength of the relationship between daily heat-related 

mortality and temperature varies as a function of temperature observation time, lag, and 

calculation method.  

Methods: Long time series of daily mortality counts and hourly temperature for seven U.S. cities 

with different climates were examined using a generalized additive model. The temperature 

effect was modeled separately for each hour of the day (with up to three-day lags) along with 

different methods of calculating daily maximum, minimum, and mean temperature. We 

estimated the temperature effect on mortality for each variable by comparing the 99th versus 

85th temperature percentiles, as determined from the annual time series. 

Results: In three northern cities (Boston, Philadelphia, and Seattle) that appeared to have the 

greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the 

heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 

zero (day of death) or afternoon and evening of lag one (day prior to death). In warmer, southern 

cities, stronger associations were found with morning temperatures, but overall the relationships 

were weaker. The strongest temperature-mortality relationships were associated with maximum 

temperature, although mean temperature results were comparable.  

Conclusions: There were systematic and substantial differences in the association between 

temperature and mortality based on the time and type of temperature observation. Because the 

strongest hourly temperature-mortality relationships were not always found at times typically 
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associated with daily maximum temperatures, temperature variables should be selected 

independently for each study location. In general, heat-mortality was more closely coupled to 

afternoon and maximum temperatures in most cities we examined, particularly those typically 

prone to heat-related mortality. 
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Introduction 

Heat is a primary weather-related cause of human mortality in the United States (Luber et al. 

2006).  Numerous studies have demonstrated that mortality increases significantly when some 

location-specific, temperature-based threshold is exceeded (Gosling et al. 2009; Hajat and 

Kosatsky 2010).  The statistical robustness of this relationship has prompted the 

implementation of heat-warning systems and other intervention strategies in many localities to 

mitigate heat mortality that is largely preventable (Smoyer-Tomic and Rainham 2001; Ebi and 

Schmier 2005).   

Despite the growth of this research area as well as the interest arising from a potential increase in 

heat-related mortality from higher thermal exposure in the future, few researchers have 

systematically examined how the time of weather observation influences the heat–mortality 

relationship.  Prior studies of heat-related mortality have considered lag effects to account for 

the time between the onset of debilitating conditions and the resulting mortality event (Braga et 

al. 2001; Davis et al. 2003a).  A few studies have compared different exposure variables to 

determine if there is an optimal variable to incorporate in heat-mortality models (Barnett et al. 

2010; Zhang et al. 2012).   However, with few exceptions (e.g., Hondula et al. 2012), no one 

has explicitly examined if the observation time of the independent variable (i.e. the heat metric 

being evaluated as the risk factor of interest), or the manner in which it is calculated, 

significantly influences the weather-mortality relationship.   

Daily maximum temperature is a common metric in heat-mortality studies as it is a proxy for the 

maximum thermal stress on the body (Hajat et al. 2006; Tan et al. 2007).  Although maximum 

temperature typically occurs a few hours after peak sunlight intensity, on days with frontal 
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passages, it can occur at any time of day (Bristow and Campbell 1984; Karl et al. 1986).  In 

contrast, the physiological rationale for using minimum temperature is that, during heat wave 

periods with high minima, the body does not have the opportunity to sufficiently recover from 

the thermal stresses experienced during the previous day (Le Tertre et al. 2006; Schwartz 2005).  

Minimum temperature typically occurs just after sunrise, but based upon air mass changes and 

cloud cover, the hour of minimum temperature also varies (Bristow and Campbell 1984; Karl et 

al. 1986). The pattern of daily warming and cooling (between maximum and minimum 

temperatures) is neither symmetric nor consistent, and by using maximum and minimum 

temperatures in epidemiological models, the researcher implicitly accepts that the exposure 

(independent) variable is being sampled at different times of the day.   

Environmental health researchers apply different conceptualizations of maximum and minimum 

temperature in temperature–mortality associations, with some (e.g., Medina-Ramón and 

Schwartz 2007) selecting maximum and minimum temperature  based on the highest and lowest 

values of 24 hourly observations taken at the “top” of each hour, whereas others (e.g., Guo et al. 

2013) use readings from maximum-minimum thermometers, in which the maximum and 

minimum may occur at any time (i.e., the extreme readings need not align with the hourly 

observations). To avoid possible statistical biases that can occur with shifts in the sampling time 

of maximum and minimum temperature, some researchers have selected specific times of day to 

characterize exposure (e.g., 7 a.m. or 2 p.m., local standard time (LST)) using the times typically 

associated with the daily high or low (e.g., Davis et al. 2003b).  Another commonly-used 

thermal variable is daily mean temperature (e.g., Donaldson et al. 2003; Huynen et al. 2001), but 

even this variable can be computed in a variety of ways, including the average of the maximum 

and minimum (which are temporally variant) and the average of hourly readings.  Thus, the 
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choice of observation time is seemingly given little consideration in the overall study design but 

it has an inherent influence on the exposure variable used in the research. 

A variety of indices and human comfort models have been developed that incorporate factors in 

addition to air temperature that influence the human heat load, including radiative and convective 

heat exchange and heat loss via evaporation (Gosling et al. 2009; Jendritzky and Tinz 2009; 

Köppe et al. 2004), but these models require more input variables. In the United States, the most 

commonly used index is apparent temperature (AT, also known as the Heat Index), a variable 

that combines temperature with humidity (and a minor wind correction) (Steadman 1984).  

Several systematic comparisons have been conducted between heat mortality associations and 

different exposure metrics. City- and national-scale studies have most frequently reported that 

daily maximum or mean summary variables (either air temperature or AT) produce stronger 

relationships than daily minima (Anderson et al. 2009; Armstrong et al. 2011; Baccini et al. 

2008). There is less agreement regarding the performance of air temperature versus AT and other 

more complex daily summary metrics like air mass types (Hajat et al. 2010; Metzger et al. 2010; 

Zhang et al. 2014), and there is some evidence that optimal variable selection varies by location, 

season, and age cohort (Barnett et al. 2010; Conti et al. 2005). None of these studies, however, 

have considered observation time and type of temperature observation, which could also 

materially influence temperature-mortality associations.   

The purpose of this research is to determine if variations in air temperature observation time and 

type impact the resulting relationship to heat-related mortality.  For example, would different 

mortality relationships result if 7 a.m. temperature is used as the exposure variable vs. 3 p.m. 

temperature or a daily mean temperature?  Does the method used to calculate daily mean 

temperature materially influence the results? Is either maximum or minimum temperature more 
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closely associated with heat mortality? To our knowledge, no one has explicitly examined the 

relationship between hour-by-hour variations in temperature and heat-related mortality.  If these 

factors do vary significantly, then this information could inform variable selection when 

attempting to estimate the burden of extreme heat on human health and help guide the 

development and deployment of certain adaptation strategies for coping with health impacts. 

Methods 

Daily mortality frequencies were acquired from the departments of health in seven cities:  

Atlanta, Georgia; Boston, Massachusetts; Minneapolis-St. Paul, Minnesota; Philadelphia, 

Pennsylvania; Phoenix, Arizona; Seattle, Washington; and St. Louis, Missouri.  These cities 

were selected because they represent a range of climates (Table 1) and heat-mortality responses 

and their heat-mortality relationships have been studied extensively as part of a larger project 

(Hondula et al. 2014, 2015; Saha et al. 2014). Boston, Minneapolis, Philadelphia, Atlanta, and 

St. Louis are all located in the eastern half of the United States where moist tropical days 

regularly occur during the summer months; dry tropical days are less common but also occur. 

The frequency and intensity of these synoptic-scale occurrences varies, with Atlanta and St. 

Louis being most commonly exposed and Boston and Minneapolis experiencing more moderate 

but still potentially dangerous heat events. Seattle is located in the Pacific northwestern region 

and generally experiences mild and dry summer weather, with occasional heat waves that occur 

when high pressure stagnates over the region. These events represent a significant deviation from 

normal weather experienced in the region. Phoenix is located in the semiarid southwest region of 

the country and its climate is characterized by an intense dry heat that lasts for nearly the entire 

warm season. Phoenix occasionally deals with periods of elevated humidity conditions in the late 
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summer months when regional wind patterns shift to transport moisture northward from the Gulf 

of Mexico, Gulf of California, and/or eastern tropical Pacific Ocean.   

The periods of record vary between cities based on the availability of health records, with 

Atlanta having the fewest years of data (14 years) and St. Louis having the most (29 years) 

(Table 1).  Mortality data were provided at the Zip Code Tabulation Area (ZCTA) scale, and 

these daily counts were aggregated for the 48–101 ZCTAs that encompassed each metropolitan 

area.  

Hourly temperature data from all calendar months were acquired from a first-order weather 

station in each metropolitan area (Table 1). Missing observations, which accounted for no more 

than 3.4% of all observations (Table 1), were linearly interpolated from the nearest values using 

the linear interpolation function in SPSS (Version 21).  The large majority of interpolated 

observations were isolated missing values.  Here, “hourly” refers to observations taken at least 

once per hour, but often at a much higher resolution. The measurement frequency varies over 

time as National Weather Service measurement protocols have changed.  As an example, a 

24-hour period during a high heat event in Philadelphia is shown in Figure 1 in which 

observations were taken four times per hour. Maximum (max) and minimum (min) temperature 

were determined from the extremes observed each day (Table 2)—these observations are free to 

occur at any time of the day (in Figure 1, for example, max and min occur at 16:15 and 05:15, 

respectively).  These were compared to the maximum and minimum temperatures acquired 

from the observation taken nearest the “top” of each hour (max-h and min-h) (Figure 1 and Table 

2).  Daily mean temperature was calculated in three different ways: as the average of max and 

min (mean), the average of max-h and min-h (mean-h), and the average of 24 measurements 

taken at the top of each hour (mean24) (Table 2).  So in this example, because of the long 
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period of consistent low temperatures before sunrise, the actual minimum temperature (min) was 

close to the hourly minimum temperature (min-h), but the actual maximum was almost 2°F 

higher than the hourly value (Figure 1).  These differences influenced the calculation of daily 

mean temperature, which on this day varied by 1.4°F depending upon the formulation used. 

Each city’s mortality time series was modeled using a generalized additive model of the form: 

Log(M) = s(time, k=y*a) + s(temp,k=4)      [1] 

where M is the daily mortality count, “s” represents a fixed thin-plate regression spline with k–1 

degrees of freedom, “time” is an integer counter for each day in the period of record, “y” 

represents the number of years in each city’s period of record, “a” is the number of degrees of 

freedom used for modeling the “time” term for each year (we used seven degrees of freedom per 

year for the main analysis and five degrees of freedom per year as a sensitivity analysis), and 

“temp” represents the daily temperature time series as measured either at each hour or for one of 

the formulations of maximum, minimum, or mean temperature shown in Table 2 (following, e.g., 

Anderson and Bell, 2009). The model used a quasi-Poisson link function to account for 

overdispersion in the mortality data and was constructed with year-round temperature and 

mortality data.  

We ran separate models to estimate relative risks (RRs) for each exposure variable on the day of 

death (lag 0) and each of the three lag days (lag 1–3), including the seven daily temperature 

exposure metrics (Table 2) and 24 hourly temperature measurements on each day. Mortality is 

archived at daily intervals, so a mortality event recorded on a day with extreme heat is 

characterized as lag 0, mortality on the day following high heat is lag 1, etc.  In one analysis, 

the seven daily summary temperature metrics are compared to the RR of mortality for each day.  
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Additionally, an hourly analysis is performed in which the RR of mortality is modeled separately 

for each hour.  Note that only the independent variable (air temperature) varies for a given 

day—mortality varies daily but not hourly.  Temperature percentiles were defined separately 

for each different independent variable and based on data from the entire calendar year. The 85th 

percentile corresponds to approximately the 55th hottest day of an average year, or roughly the 

median summer temperature for a three-month warm season.   

Each RR represents the estimated risk of mortality at the 99th percentile of the metric-specific 

temperature distribution (M99) relative to the 85th percentile (M85):  

          [2] 

For example, in Philadelphia, the estimated RR of mortality for the 99th percentile of maximum 

temperature on lag 0 (max) was 1.051, whereas the estimated RR for the 99th percentile of 

minimum temperature on lag 0 (min) and of hourly temperature measured at LST 0400 were 

1.042 and 1.033, respectively (Figure 2).  

The confidence interval (CI) for each RR was calculated using the equation:  

       [3] 

where “se” is the standard error for mortality predictions at a given temperature percentile 

(Gardner and Altman 1989).  Statistical significance was determined when the CI for a given 

temperature effect did not include one.  (As a sensitivity analysis, we also estimated RRs 

comparing the estimate risk at the 99th percentile to the 90th percentile, instead of using the 
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estimated risk at the 85th percentile as the reference value.)  We also extracted a generalized 

cross validation score for each model to use as a diagnostic of model fit (Wood 2006).  

Analyses were run using the mgcv package (version 1.7-6) with R version 2.13.2 (R 

Development Core Team 2012; Wood 2006). Model-based estimates of the risk of mortality and 

corresponding standard errors for the 99th and 85th percentiles of each temperature metric’s 

distribution were extracted using the “terms” feature of the predict function. 

Results  

Statistically significant relationships between temperature and mortality were estimated for each 

city except Atlanta, The strength of these relationships varied markedly, and often 

systematically, when comparing across cities, temperature metrics, and lag times (Figures 3 and 

4).   

As an example, estimated RRs for Philadelphia are presented in Figure 3. RRs for the estimated 

risk of mortality at the 99th versus 85th percentile of the hourly temperature distribution were 

statistically significant beginning at 0900 LST on the day before death (lag 1, 0900 LST RR = 

1.025; 95% CI: 1.002, 1.048) through every hour of the day of death (lag 0, 2300 LST RR 

=1.044; 95% CI: 1.021, 1.066).  However, the strongest temperature–mortality relationships 

were evident at 0900 LST on lag 0 (RR=1.056; 95% CI: 1.033,1.080) and at 1900 LST on lag 1 

(RR=1.048; 95% CI: 1.025,1.071).  On each lag day, RRs were lowest during the early morning 

hours (after midnight through approximately 0600 LST) and highest during the late morning 

through late evening hours (approximately 0900–2200 LST), suggesting a diurnal pattern of heat 

impacts.  However, patterns of RRs for hourly temperatures on the day of death (lag 0) should 

be interpreted with caution, since temperature “exposures” measured later in the day are 
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increasingly likely to have occurred after the time of death, and positive associations are 

therefore more likely to reflect correlations of hourly temperatures later in the day with 

temperatures earlier in the day, rather than actual effects of hourly heat on mortality.  We 

include the full 24 hours on lag 0 for completeness, but these late-day relationships should be 

considered with caution. 

RRs for mortality at the 99th versus 85th percentile of each of the seven daily temperature metrics 

were broadly consistent with the hourly RRs. For example, in Philadelphia, RRs were 

statistically significant for all daily exposure metrics on lag 0 (Figure 3a, inset). However, by lag 

1, RRs for the two minimum temperature metrics (min and min-h) were no longer significant, 

and none of the daily metrics were significant predictors of mortality by lag 2. Cross-validation 

scores computed for the hourly variables for Philadelphia (Figure 3b) show that model fit was 

strongest when temperatures near midday were used from lag 0, close to the observation time 

associated with the largest effect size. Model performance deteriorated rapidly between lag 0 and 

lag 1.  

In Boston and Seattle, there were statistically significant relationships throughout the day of lag 

0 and most (or all) of the hours of lag 1 (Figure 4b, e). In both cities, the relationship was 

markedly weaker in the early morning hours of lag 1, but in the case of Seattle, these 

relationships were still significant. Thus, the general pattern of diurnality observed in 

Philadelphia was also present in Boston and Seattle—the mortality–temperature relationships 

tended to be weaker in the late overnight hours and strongest between late morning and evening.  

These hourly results were consistent with the daily summary variables—whereas RRs for at least 

2 of the 3 mean temperature metrics (mean, mean-h, and mean-24) and both maximum 

temperature metrics (max and max-h) were still significant on lag 1 for both cities, one or both of 
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the minimum temperature metrics was not.  It is noteworthy that at lag 3 for Seattle, all RRs 

were negative for the daily metrics and most of the hourly metrics, a pattern that might reflect 

“mortality displacement,” i.e., reduced mortality rates that may occur 72–96 hours after a major 

heat event that hastens the time of death in frail individuals (Hajat et al. 2005; Saha et al. 2014). 

However, evidence of mortality displacement must be interpreted with caution in the absence of 

information on the length or severity of each heat event. 

A different pattern of mortality–temperature relationship was evident in Minneapolis and St. 

Louis (Figure 4c, f). In these cities, a few hours at lag 0 had weak (but statistically significant) 

relationships, but almost none were evident by lag 1 and later.  In Minneapolis, the strongest 

association with hourly temperatures was at 0700 LST on lag 0 (RR = 1.042, 95% CI: 1.011, 

1.074), and associations with daily mean and daily minimum temperature metrics were slightly 

stronger than RRs for the maximum temperature metrics on lag 0.  In St. Louis, hourly RRs 

were most positive in the afternoon of lag 0 as compared to the morning, when the RRs decline.  

The overall pattern on lags 0 and 1 suggests a diurnal relationship similar to that found in Boston 

and Seattle, even though hourly RRs were significant after noon on lag 0 only, and all hourly 

RRs were less than one on lags 2 and 3. The relationship was strongest in St. Louis in the 

afternoon on lag 0 (RR=1.031, 95% CI: 1.012, 1.050 at 1500 LST) and for both maximum 

temperature variables as compared to mean or minimum temperatures.  Negative RRs for 

hourly temperatures and mortality on lags 2 and 3 in Minneapolis and St. Louis might reflect 

mortality displacement, though RRs are close to the null, and associations between temperature 

and mortality on lag 0 were generally weak for St. Louis. 
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We were unable to detect a significant mortality-temperature relationship for Atlanta using 

all-cause mortality records (Figure 4a). Neither the hourly nor summary variables were clearly 

related to mortality in Atlanta. 

In Phoenix, although all hourly RRs on all lag days were positive, only a few were statistically 

significant (Figure 4d).  Between lag 1 and lag 0 as well as lag 2 and lag 1, RRs were larger for 

the overnight and morning hours from roughly 2000 LST to 0800 LST, suggesting a relationship 

that differs from the other six cities.  None of the daily summary variables were significantly 

associated with mortality in Phoenix.  So unlike Philadelphia, Boston, and Seattle, where RRs 

showed evidence of a diurnal pattern, the strongest mortality–temperature models for Phoenix 

are constructed using morning temperatures for specific hours. 

In general, for the six cities with significant relationships, RRs for daily minimum temperature 

(min and min-h) were closer to the null than RRs for the daily maximum and mean temperature 

metrics, though differences were generally small and limited to lag 0 and lag 1.  Some subtle 

differences were evident based on calculation/observation method for the daily summary 

variables.  In Boston, for example, the RR for lag 1 mean temperature was estimated as 1.030 

(95% CI: 1.002, 1.058), for lag 1 mean-h as 1.029 (95% CI: 1.002, 1.056), and for lag 1 mean-24 

as 1.025 (95% CI: 0.998, 1.052)—so mean and mean-h were significant but mean-24 was not. 

Differences in RR estimates were similarly small for the maximum and minimum metrics.   

The confidence intervals, which indicate the precision of effect estimates, exhibited similar 

widths for the different methods of calculating mean, maximum, and minimum temperatures.   

Cross-validation scores for models using hourly temperature observations were consistently 

lowest on lag 0 compared with lags 1–3 (Figure 5). The times of best model fit commonly 
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occurred during the daytime hours as opposed to overnight, with most cities showing better 

model fit in the late morning than in the afternoon. Minimum cross-validation scores did not 

uniformly align with the times associated with the largest RR.  

Discussion 

Evidence for stronger temperature–mortality relationships in northern cities and weaker or 

non-significant models in southern cities is consistent with previous research indicating that 

cooler locations are more susceptible to heat impacts (Kalkstein and Davis 1989; Medina-Ramón 

and Schwartz 2007), possibly because of reduced acclimatization or adaptation (Davis et al. 

2003a; Gosling et al. 2009).  Identification of the strongest associations between temperature 

and mortality on the day of the heat event or on the following day is likewise consistent with 

prior findings (Davis et al. 2003b; Gosling et al. 2009).  However, to the best of our knowledge, 

no previous research has documented the hourly variability in the strength of 

temperature–mortality relationships, nor has there been any comparison of daily summary 

temperature variables computed using different methods.  Here, we show that the selection of 

time-of-day and summary measure for the independent variable can influence the strength of the 

temperature-mortality association in the resulting model. 

In three of the seven study cities (Boston, Philadelphia, and Seattle), associations between 

mortality and hourly temperatures during the daytime and evening were stronger than 

associations with hourly temperatures during the morning hours, and associations between 

mortality and daily mean or maximum temperature metrics were slightly stronger than RRs 

based on daily minimum temperature metrics.  Thus, warm days and evenings had a greater 

mortality impact in these cities than warm nights.  Contrasting theories on heat mortality 
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emphasize either the impact of extreme conditions that focus on the physiological stress placed 

on the body or the lack of a period of early morning respite during heat waves when the body 

recovers from daily thermal stress (Basu et al. 2002; Braga et al. 2002; Koppe et al. 2004).  In 

Philadelphia, for example, mortality relative risk estimates for 2000 LST on lag 1 were 4% 

higher for the 99th vs. the 85th percentile of temperature (RR=1.040; 95% CI: 1.017, 1.062).  

However, there is no relative increase in mortality at 0400 LST on lag 1 (RR = 1.005; 95% CI: 

0.984, 1.026).  This morning-daytime contrast in the estimated temperature effect could occur 

because morning temperatures are not strong indicators of the days with the highest peak heat 

stress, a proposition supported by the correlation coefficients shown in Table 3.  For example, 

the correlation between minimum temperatures (which tend to occur in the morning) and 

maximum temperatures (which tend to occur in the afternoon) was no higher than 0.577 in any 

city for days with mean temperatures above the 85th percentile of the annual mean temperature 

distribution. Additionally, morning temperatures may be less consequential for mortality impacts 

than afternoon temperatures because the relatively cooler morning conditions provide some 

protective effect and/or people’s behaviors and activities in the mornings are less likely to lead to 

heat stress.  

An inherent assumption with this approach is that heat impacts are relative depending on climate, 

an assumption that is widely supported in the literature (Braga et al. 2001, 2002; Davis et al. 

2003a, 2003b; Donaldson et al. 2003; Kalkstein and Davis 1989; Medina-Ramón and Schwartz 

2007; Pattenden et al. 2003).  It is noteworthy that the diurnal changes in RR present in three 

northern cities (Boston, Philadelphia, and Seattle) are also evident in St. Louis, a location 

historically associated with high heat mortality (Medina-Ramón and Schwartz 2007), even 

though our results only show a significant effect at lag 0.  Perhaps these northern cities lack the 
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infrastructure (e.g., building materials, mechanical cooling systems) to fully mitigate heat effects 

in the afternoon and early evening.  While one might argue that the older housing stock built 

during times of historically cooler climates is less adaptable to heat impacts, the urban heat 

island effect, in which higher temperatures are observed in developed vs. rural areas, has a much 

greater impact on minimum than maximum temperatures (Oke 1987).   

The lack of strong or consistent relationships between temperature and all-cause mortality in 

Atlanta and Phoenix is supported by prior research showing a muted impact in warmer climates 

(Anderson and Bell 2009; Davis et al. 2003a, 2003b; Kalkstein and Davis 1989).  Here, air 

conditioning and other cooling mechanisms (such as evaporative coolers, in the case of Phoenix) 

are prevalent, some infrastructure (e.g., buildings, parks, walkways) is designed to mitigate 

summer heat, and the populations have become acclimated (Chuang et al. 2013; Hartz et al. 

2013).  In Phoenix, it is noteworthy that the strongest mortality relationships at lag 0 and lag 1 

are for the early morning and mid-morning hours and not the afternoon or evening. This finding 

is particularly relevant for efforts to diminish the climatic effects of future urbanization in the 

Phoenix metropolitan area, where mortality projections show wide disparities between maximum 

and minimum temperatures, the latter of which is primarily impacted by the urban heat island 

effect (Georgescu et al. 2011; Hondula et al. 2014). We note that because these cities experience 

potentially dangerous heat on a more routine basis than the other study cities, choice of a lower 

baseline temperature percentile (e.g., the 75th or 80th percentile) and/or choice of a different 

response variable (e.g., deaths specifically coded as heat-related) may have revealed an 

association between heat and health undetected by the approach we used. In Phoenix, for 

example, the association between temperature and mortality has been shown to be stronger for 

models based on heat-related deaths versus those based all-cause mortality (Petitti et al. 2015).  



Environ Health Perspect DOI: 10.1289/ehp.1509946 
Advance Publication: Not Copyedited 

 

 18 

The results for Minneapolis-St. Paul are inconsistent with expectations.  Although there are 

some  statistically significant heat-mortality associations at lag 0 (e.g., RR at 0600 LST = 

1.039; 95% CI: 1.009, 1.069) and late evening at lag 1 (e.g., RR at 2000 LST = 1.033; 95% CI: 

1.005, 1.062), the overall mortality response was much less evident than in Boston, Philadephia, 

or Seattle.  Other research has identified a demonstrable heat impact in Minneapolis using 

different periods of record and methods (Anderson and Bell 2009; Davis et al. 2003b; Hondula et 

al. 2015), with varying effect estimates for different demographic groups reported elsewhere 

(O’Neill et al. 2003, O’Neill et al. 2005).  It may also be noteworthy that the somewhat shorter 

period of record in Minneapolis may have resulted in less robust RRs and larger confidence 

intervals compared to the other cities in this research. 

With respect to the daily summary temperature metrics, the differences in effect estimates tended 

to be minimal.  Thus, based on this sample of cities, the impact of different methods of 

calculating the mean, maximum, and minimum temperature is small, and researchers are 

therefore encouraged to use the most convenient method.  However, the selection of the daily 

metric to use—mean, maximum, or minimum—is more critical owing to differences in the 

estimated RR of mortality across the different cities we examined.  

We observed that the times and days associated with the optimal cross validation scores were not 

always the same as those that were associated with the largest model-estimated RR values. These 

two values are not directly comparable because they are calculated using different portions of the 

temperature distribution. RR is based on only the 99th and 85th percentile temperatures whereas 

the cross-validation scores utilize the entire distribution.  Models that do not provide a good fit 

across the entire temperature distribution but have a steep slope at high temperatures will appear 

to provide contrasting information between the RR and cross validation scores. It is also possible 
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that certain models are driven by a small number of highly influential data points that, when 

removed for subsetting the data for cross validation, lead to poorer model fit.    

The temperature metrics we evaluated are often considered to be highly correlated with one 

another; if so, the differences in the shape of the temperature-mortality curves derived from 

different metrics (Figure 2) and the associated relative risk point estimates and cross-validation 

scores associated with different metrics (Figures 3–5) may seem to be surprisingly large. The 

extent to which these temperature metrics are, in fact, highly correlated with one another, 

depends on the portion of the temperature distribution under consideration. When examined from 

an annual perspective, most temperature observations and metrics are correlated because of 

seasonality; all metrics follow a similar progression throughout the course of the year. But 

differences between these metrics at the high end of the temperature distribution—those 

associated with summertime and extreme heat conditions—are most important in determining 

the RR estimates examined here. Temperature metrics are not as highly correlated at the 

extremes as they are for the entire summer or calendar year because the influence of seasonality 

becomes muted. For example, in comparing the overall correlations from all days during the 

summer months (~92 days) to the correlations from only those days with daily mean 

temperatures [(max+min)/2] above the 85th percentile of daily means (~55 days), the correlation 

between 1200 and 1800 LST temperatures (averaged across all cities) dropped from 0.829 to 

0.615 (Table 3).  Similarly, the correlation between daily maximum and minimum temperature 

declined from 0.702 to 0.417.  The differences between these time series are carried forward 

into temperature–mortality models and can be manifested as large differences in the estimated 

temperature effect (as seen, for example, in Figure 2 and RR estimates in Figures 3 and 4). 
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Our results are dependent upon accurate reporting of the date of death in the mortality records.  

We cannot control for possible inter-city biases associated with reporting practices, but we 

assume that any errors are randomly distributed.  Because air temperature is highly 

autocorrelated, the hourly models are not independent.  Although this would generally be a 

concern in the development of statistical models, it is not an issue in this research as our only 

goal is to compare temperature–mortality models at each hour.  To allow for a quantitative  

comparison between cities and different temperature observation times and daily summary 

metrics, we selected consistent values for the percentiles of temperature used as the exposure 

contrast for the RRs (metric-specific 99th percentile versus 85th percentile defined based on 

year-round data) and degrees of freedom in the smoothing splines (k=7). The temperature 

percentiles we examined may not be the most appropriate representations of baseline and 

extreme heat conditions across all cities and observation times and the absolute differences 

between the percentiles we examined certainly vary from one city to another and one time of day 

to another.  Comparisons using other temperatures and splines influenced the point estimates 

and CIs of some the models but not the general shape of the curves (data not shown). Point 

estimates using the 90th percentile temperature metrics as the baseline were smaller and a higher 

number of CIs using the 90th percentile included the null, but the progression of estimates from 

one observation to another remained similar. Differences between the models with five or seven 

degrees of freedom were generally minor and showed no systematic pattern toward larger or 

smaller point estimates or CIs. The siting of the meteorological stations used in this study may 

introduce some bias into the results, particularly because some of the stations are located in cities 

with a strong urban heat island effect (which impacts the diurnal temperature range) and/or one 

that has amplified over the study period (e.g., Chow et al. 2012; Hondula et al. 2012). We 
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anticipate that any such bias would be small in light of other studies that have reported that 

temperature–mortality models using single meteorological stations perform just as well as those 

that incorporate multiple meteorological stations from different locations across urban areas 

(Guo et al. 2013; Schaeffer et al. 2015).  Additional research is required to understand how well 

airport observations correlate to actual temperatures experienced by urban residents (e.g., 

Bernhard et al. 2015, Kuras et al. 2015).  Despite the relatively long temporal records of 

mortality, sample size differences between cities may have impacted precision of effect 

estimates, although we did not observe any large biases related to sample size.  Finally, because 

each day is examined independently, this study design does not allow us to specifically examine 

mortality displacement or the impacts of high heat over several consecutive days. 

To our knowledge, this research is the first to examine the relationship between hour-by-hour 

temperature variations and temperature variable selection on heat-related mortality in the U.S..  

The examination of hourly differences (Figures 3 and 4) provides a novel way of characterizing 

how the association between temperature and mortality evolves over fine time scales between the 

day of death and exposure three days prior.  Cross-validation metrics indicate that models using 

temperatures from lag 0, and especially daytime hours on lag 0, were better predictors of excess 

mortality than other available options.   

Conclusions 

After comparing 24 hourly temperatures and several different methods of calculating daily mean, 

maximum, and minimum temperature at lags of up to three days, we find differences in mortality 

effect estimates based solely on temperature variable selection in three cities commonly 

considered to be heat-sensitive (Boston, Philadelphia, and Seattle).  In these cities, afternoon, 
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maximum, and daily mean temperatures were most strongly related to mortality, primarily at lag 

0 (i.e., high heat occurring on the day of death).  However, in cities where high summer 

temperatures are common (Phoenix, St. Louis, Atlanta), the relationships were weaker, and there 

was some evidence of a greater influence of morning temperatures at lag 0.  In all cities, the 

relationships weakened significantly on or after lag 1, and some cities showed evidence of a 

mortality displacement effect by lag 3. In some cases, the statistical significance of effect 

estimates for mean, maximum, and minimum temperature depended upon the manner in which 

the value was measured or calculated.  In general, however, daily mean or maximum 

temperatures were more strongly associated with mortality than minimum temperatures, and 

differences between relative risks based on alternative versions of the same temperature metric 

(e.g., between maximum temperature based only hourly measurements versus the maximum 

temperature measured at any time during the day) were much smaller than differences between 

relative risks estimated for different temperature metrics (e.g., maximum versus minimum daily 

temperature). 

The lack of a single, consistent relationship across cities is consistent with prior research (Barnett 

et al. 2010; Hajat et al. 2010) and argues for the development of city-specific models.  Based on 

these findings for a sample of U.S. cities from different climate zones, we recommend rigorous 

consideration and precise articulation of independent variable choice as well as examination of a 

number of alternative metrics (especially given the ready availability of hourly weather 

observations) when performing population-scale health risk assessment related to heat stress.  
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Table 1. Locations and Data Sources. 

City 
(Abbreviation) 
and Geographic 
Centroid 

Climate 
Classification 
(Köppen Type)a  

Summerb 
Maximumc 
Temperature 
Range 
(Median) 

Geographic 
Area 

Population 
of Study 
Area in 2000 

Mortality Data 
Source 

Period of  
Record 

Average 
Number of 
Deaths per 
Year 

Weather 
Data 
Missing 

Weather Station 
Location 
 

Atlanta (ATL) 
33.875°N 
84.301°W 

Consistently hot, 
humid summers 
(Cfa) 

16.7–40.0°C 
(31.1°C) 

4,807 km2 2,810,278 Georgia Dept. of 
Community 
Health 

1994–2007  
(14 years) 

15,242  3.4% Hartsfield Jackson 
Atlanta International 
Airport 33.637°N, 
84.428°W 

Boston (BOS) 
42.392°N 
71.102°W 

Mild but humid 
summers with 
periodic hot spells 
(Dfa) 

11.7–38.3°Cd 
(26.7°C) 

724 km2 1,536,926 Massachusetts 
Dept. of Public 
Health 

1987–2007 
(21) 

13,047 1.0% General Edward 
Lawrence Logan 
International Airport 
42.363°N, 
71.006°W 

Minneapolis 
(MSP)  
44.956°N 
93.197°W 

Mild summers with 
periodic hot spells 
(Dfa) 

11.7–38.3°Cd 
(27.3°C) 

3,637 km2 2,265,814 Minnesota 
Center for 
Health Statistics 

1992–2008 
(17) 

13,715 1.0% Minneapolis St. Paul 
International Airport 
44.882°N, 
93.222°W 

 
Philadelphia 
(PHL) 
40.011°N 
75.134°W 
 

 
Warm but variable 
summers with 
annual heat waves 
(Cfa) 

 
15.0–39.4°C 
(30.0°C) 

 
352 km2 

 
1,509,525 

 
Pennsylvania 
State Dept. of 
Health 

 
1983–2008 
(26) 

 
15,752 

 
3.1% 

 
Philadelphia 
International Airport 
39.872°N, 
75.241°W 

 
Phoenix (PHX) 
33.563°N 
112.030°W 

 
Hot and arid with 
occasional periods 
of high summer 
humidity (BSh) 

 
23.9–50.0°C 
(41.1°C) 

 
5,357 km2 

 
2,944,227 

 
Arizona Dept. of 
Health Services 

 
1989–2007 
(19) 

 
19,117 

 
0.3% 

 
Phoenix Sky Harbor 
International Airport 
33.434°N, 
112.012°W 

St. Louis (STL) 
38.614°N 
90.459°W 

 
Warm to hot and 
humid summers 
(Cfa) 

 
14.4–41.7°C 
(31.1°C) 

 
1,751 km2 

 
1,401,298 

 
Missouri Dept. 
of Health 

 
1980–2008 
(29) 

 
13,681 

 
2.4% 

 
Lambert St. Louis 
International Airport 
38.747°N, 
90.361°W 

 
Seattle (SEA) 
47.536°N 
122.259°W 

 
Mild, dry summers 
with minimal 
rainfall (Csb) 

 
11.7–37.8°C 
(22.8°C)  

 
1,071 km2 

 
1,567,483 

 
Washington 
State Dept. of 
Health 

 
1988–2009 
(22) 

 
10,833 

 
0.8% 

 
Seattle Tacoma 
International Airport 
47.449°N, 
122.309°W 

a Climate types are extracted from a 0.5 degree resolution map of the updated Köppen-Geiger classification developed by Kottek et al. (2006)  
b Based on June–August observations during the study period 
c Where maximum is considered the highest temperature recorded during the day regardless of time (the metric defined as max in Table 2).   
d The observed summer maximum temperature ranges for these two cities during the study period are, in fact, identical   
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Table 2.  Temperature Variables Used in Heat-mortality Modeling. 

Variable 
Abbreviation 

Description 

max maximum temperature between midnight and midnight as recorded by a 
maximum/minimum thermometer.  Can occur at any time. 

max-h maximum temperature of 24 hourly values taken at the observations 
nearest the top of each hour (midnight, 1 a.m., etc.) 

min minimum temperature between midnight and midnight as recorded by a 
maximum/minimum thermometer.  Can occur at any time. 

min-h minimum temperature of 24 hourly values taken at the observations 
nearest the top of each hour (midnight, 1 a.m., etc.) 

mean (max+min)/2 

mean-h [(max-h)+(min-h)]/2 

mean-24 average of 24 hourly values taken at the top of each hour 
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Table 3. Correlation coefficients between selected pairs of temperature observations for each city 
(abbreviations in Table 1).  

 Temper-
ature 
metrics 
compared 

Time span 
of 
comparison Atlanta Boston Minneapolis Philadelphia Phoenix Seattle 

St. 
Louis 

All-City 
Average 

1200 & 
1800 LST 

  

Entire 
Summerb 0.713 0.863 0.859 0.829 0.838 0.882 0.818 0.829 

Days ≥ 85th 
percentilec 0.498 0.629 0.644 0.594 0.598 0.772 0.568 0.615 

1200 LST 
& meana 

  

Entire 
Summer 0.883 0.933 0.901 0.911 0.888 0.934 0.912 0.909 

Days ≥ 85th 
percentile 0.793 0.828 0.795 0.805 0.690 0.884 0.812 0.801 

maxa & 
mina 

  

Entire 
Summer 0.655 0.758 0.733 0.705 0.645 0.634 0.783 0.702 

Days ≥ 85th 
percentile 0.423 0.472 0.535 0.376 0.143 0.395 0.577 0.417 

mean & 
mean-24a 

  

Entire 
Summer 0.992 0.997 0.995 0.996 0.993 0.995 0.997 0.995 

Days ≥ 85th 
percentile 0.974 0.991 0.988 0.986 0.975 0.989 0.990 0.985 

max lag 0 
& max 
lag 1 

Entire 
Summer 0.755 0.558 0.677 0.659 0.724 0.692 0.672 0.677 

Days ≥ 85th 
percentile 0.660 0.341 0.459 0.484 0.553 0.457 0.456 0.487 

a mean refers to daily mean temperature ((max+min)/2); where max and min are the highest and 
lowest temperature, respectively, recorded at a station on a given day regardless of observation 
time 
b June–August 
c based on daily mean temperature [(max+min)/2]; percentile defined based on all calendar 
months  
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Figure Legends 

Figure 1. Example demonstrating the calculation of different temperature variables during a high 

heat event in Philadelphia, Pennsylvania (July 17, 2013).  Each observation is shown (open 

circle) along with the hourly observation taken closest to the “top” of each hour (closed circle).  

Variable definitions: max, min: highest and lowest temperature between midnight and midnight 

regardless of observation time; max-h, min-h: highest and lowest temperature of the 24 

observations made over the course of a day that occur near the top of each hour; mean: the 

average of max and min; mean-h; the average of max-h and min-h; mean-24: the average of 24 

hourly observations made at the top of each hour.  

Figure 2. Modeled relative risks comparing mortality at each percentile of the temperature range 

for three different temperature metrics to mortality at the 85th percentile of the temperature range.  

The relative risks are shown for three different same-day (lag 0) temperature metrics for 

Philadelphia. The solid black line shows the relative risks for daily maximum temperature (max); 

solid gray for daily minimum temperature (min); dark dashes for 0400 local standard time (LST) 

temperature. Percentiles are calculated separately for each temperature metric. Vertical lines 

indicate temperature percentiles used in the calculation of relative risks and confidence intervals. 

Here, the relative risk of mortality for the 99th versus 85th percentile of each temperature metric is 

estimated at 1.051 for max, 1.042 for min, and 1.033 for temperature at 0400 LST.  

Figure 3. a) The main panel shows the relative risk of mortality (with 95% confidence intervals) 

in Philadelphia for temperatures at the 99th percentile compared with the 85th percentile 

estimated using separate models for temperatures at each hour and on each lag day, where lag 0 

represents the day of death, lags 1–3 represent the 1, 2, and 3 days before the day of death. Inset 
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panels show RRs for the seven daily temperature metrics on each lag day: max = maximum 

temperature; max-h =maximum hourly temperature; min = minimum temperature; min-h = 

minimum hourly temperature; mean = (max+min)/2; mean-h = (max-h+min-h)/2; mean-24 = 

average value of the 24 hourly temperatures. All models are adjusted for time trends (7 df). b) 

Cross-validation scores for each of the hourly models examined in Panel a; lower 

cross-validation scores indicate better model fit.   

Figure 4. Relative risks and 95% confidence intervals for mortality in association with each 

temperature metric at the 99th versus 85th percentile of the temperature distribution for a) 

Atlanta, b) Boston, c) Minneapolis, d) Phoenix, e) Seattle, and f) St. Louis, respectively. Each 

relative risk is estimated using a separate model for temperatures at each hour and on each lag 

day, where lag 0 represents the day of death, lags 1–3 represent the 1, 2, and 3 days before the 

day of death. Inset panels show relative risks for the seven daily temperature metrics on each lag 

day: max = maximum temperature; max-h =maximum hourly temperature; min = minimum 

temperature; min-h = minimum hourly temperature; mean = (max+min)/2; mean-h = 

(max-h+min-h)/2; mean-24 = average value of the 24 hourly temperatures. The key for the daily 

metrics is shown in panel a.  All models are adjusted for time trends (7 df). 

Figure 5. Cross-validation scores for models of RRs for mortality in association with hourly 

temperatures at the 99th percentile relative to the 85th percentile, estimated using separate 

models for each hour and lag day, adjusted for time trends using a time spline with seven degrees 

of freedom per year.  a) Atlanta, b) Boston, c) Minneapolis, d) Phoenix, e) Seattle, and f) St. 

Louis. Lower cross-validation scores indicate better model fit.   
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Figure 1. 
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Figure 2. 
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Figure 3. 

 



Environ Health Perspect DOI: 10.1289/ehp.1509946 
Advance Publication: Not Copyedited 

 

 36 

Figure 4. 

 



Environ Health Perspect DOI: 10.1289/ehp.1509946 
Advance Publication: Not Copyedited 

 

 37 

Figure 5. 
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